Archive | 2019

Transition from opposed flame spread to fuel regression and blow off: Effect of flow, atmosphere, and microgravity

 
 
 
 
 
 
 
 

Abstract


Abstract The spread of flames over the surface of solid combustible material in an opposed flow is different from the mass burning (or fuel regression) in a pool fire. However, the progress of a flame front over a solid fuel includes both flame spread and fuel regression, but the difference between these two processes has not been well clarified. In this work, experiments using cylindrical PMMA samples were conducted in normal gravity and in microgravity. We aim to identify the transition from opposed flame spread to fuel regression under varying conditions, including sample size, opposed flow velocity, pressure, oxygen concentration, external radiation, and gravity level. For a thick rod in normal gravity, as the opposed flow increases to 50–100\u202fcm/s, the flame can no longer spread over the fuel surface but stay in the recirculation zone downstream of the cylinder end surface, like a pool fire flame. The flame spread first transitions to fuel regression at a critical leading-edge regression angle of α \u202f≈\u202f 45°, and then, flame blow-off occurs. Under large opposed flow velocity, a stable flat blue flame is formed floating above the rod end surface, because of vortex shedding. In microgravity at a low opposed flow (

Volume 37
Pages 4117-4126
DOI 10.1016/J.PROCI.2018.06.022
Language English
Journal None

Full Text