Archive | 2019

Effects of NOx addition on autoignition and detonation development in DME/air under engine-relevant conditions

 
 

Abstract


Abstract Exhaust gas recirculation (EGR) technology can be used in internal combustion engines to reduce NOx emission and improve fuel economy. However, it also affects the end-gas autoignition and engine knock since NOx in EGR can promote ignition. In this study, effects of NOx addition on autoignition and detonation development in dimethyl ether (DME)/air mixture under engine-relevant conditions are investigated. Numerical simulation considering both low-temperature and high-temperature chemistry is conducted. First the kinetic effects of NOx addition on the negative temperature coefficient (NTC) regime are assessed and interpreted. It is found that NOx addition greatly promotes both low-temperature and high-temperature ignition stages mainly through increasing OH production. Then the autoignitive reaction front propagation induced by either local NO accumulation or a cold spot within NTC regime with different amounts of NO addition is investigated. For the first time, supersonic autoignition modes including detonation induced by local NO accumulations are identified. This indicates that local accumulation of NOx in end gas might induce super-knock in engines with EGR. A new parameter quantifying the ratio of sound speed to average reaction front propagation speed is introduced to identify the regimes for different autoignition modes. Compared to the traditional counterpart parameter used in previous studies, this new parameter is more suitable since it yields a detonation development regime in a C-shaped curve which is almost unaffected by the initial conditions. The results in this study may provide fundamental insights into knocking mechanism in engines using EGR technology.

Volume 37
Pages 4813-4820
DOI 10.1016/J.PROCI.2018.06.063
Language English
Journal None

Full Text