Results in physics | 2021

Temperature dependent thermal conductivity during photothermal excitation process of semiconductor medium with an internal heat source in gravitational field

 
 

Abstract


Abstract In this work, a novel model of semiconducting elastic material is studied during a process of photothermal excitation. The dual phase lag (DPL) for the heat conduction equation is introduced in the context of the variable of the thermal conductivity. The thermal conductivity can be chosen as a linear function of temperature (depend on temperature). The generalized thermoelasticy theory is investigated when an internal heat source is steady with a constant speed in the context of the gravitational field. The harmonic wave technique is used in two-dimensional deformations to obtain the considered physical fields. Some thermal loading subjected to thermal shock and other mechanical forces at the outer free surface of a semi-infinite elastic medium (semiconductor as silicon) are applied. The considered physical fields were illustrated graphically. The influences of some several variables are obtained which based on the DPL (thermal memories) model and the variable thermal conductivity. The results obtained are investigated and are depicted graphically.

Volume 22
Pages 103867
DOI 10.1016/J.RINP.2021.103867
Language English
Journal Results in physics

Full Text