Sustainable Energy Technologies and Assessments | 2021

Meeting energy needs of low-income Sub-Saharan households with a Partially Hybridised Solar Technology (PHST): Experimental performance evaluation based on simulated solar radiation and demand profiles

 
 
 
 
 

Abstract


Abstract Renewable energy technologies for sustainable development are rapidly attracting attention across many disciplines despite technical, economic, and social barriers that limit application beyond the laboratory. This study proposes novel semi-automated and automated domestic hot water and electricity demand simulation experiments to evaluate the performance of a proof-of-concept prototype under simulated solar conditions. The prototype is a Partially Hybridised Solar Technology (PHST) which integrates photovoltaic (PV) and low-temperature solar thermal technology for low-cost electricity and domestic hot water supply. The domestic hot water and electrical demand profiles, and the solar radiation utilised during the study represent typical conditions of off-grid households in Sub-Saharan Africa. The prototype delivered a thermal energy supply potential of 2 , 073 ± 75 k J per day at an average solar thermal conversion efficiency of 29.4 ± 1.0 % . The average yield of Direct Current (DC) electricity was 273 Wh per day at a corresponding PV module efficiency of 12.1% but depended on the type of charge controller. These results provide essential baselines for future computer modelling work and techno-economic predictions for Sub-Saharan Africa. The study has important future implications to test standards guiding laboratory-based evaluation of Solar Home Systems (SHSs) for electricity and domestic hot water.

Volume 46
Pages 101302
DOI 10.1016/J.SETA.2021.101302
Language English
Journal Sustainable Energy Technologies and Assessments

Full Text