ArXiv | 2021

Incentive-based Decentralized Routing for Connected and Autonomous Vehicles using Information Propagation

 
 
 

Abstract


Abstract Routing strategies under the aegis of dynamic traffic assignment have been proposed in the literature to optimize system performance. However, challenges have persisted in their deployment ability and effectiveness due to inherent strong assumptions on traveler behavior and availability of network-level real-time traffic information, and the high computational burden associated with computing network-wide flows in real-time. To address these gaps, this study proposes an incentive-based decentralized routing strategy to nudge the network performance closer to the system optimum for the context where all vehicles are connected and autonomous vehicles (CAVs). The strategy consists of three stages. The first stage incorporates a local route switching dynamical system to approximate the system optimal route flow in a local area based on vehicles’ knowledge of local traffic information. This system is decentralized in the sense that it only updates the local route choices of vehicles in this area rather than route choices of all vehicles in the network, which circumvents the high computational burden associated with computing the flows on the entire network. The second stage optimizes the route for each CAV by considering individual heterogeneity in traveler preferences (e.g., the value of time) to maximize the utilities of all travelers in the local area. Constraints are also incorporated to ensure that these routes can achieve the approximated local system optimal flow of the first stage. The third stage leverages an expected envy-free incentive mechanism to ensure that travelers in the local area can accept the optimal routes determined in the second stage. The study analytically discusses the convergence of the local route switching dynamical system. We also show that the proposed incentive mechanism is expected individual rational and budget-balanced, which ensure that travelers are willing to participate and guarantee the balance between payments and compensations, respectively. Further, the conditions for the expected incentive compatibility of the incentive mechanism are analyzed and proved, ensuring behavioral honesty in disclosing information. Thereby, the proposed incentive-based decentralized routing strategy can enhance network performance and user satisfaction under fully connected and autonomous environments.

Volume abs/2102.00882
Pages None
DOI 10.1016/J.TRB.2021.05.004
Language English
Journal ArXiv

Full Text