Thin-walled Structures | 2021

Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load

 
 
 
 
 
 
 

Abstract


Abstract This paper presents a dynamic buckling analysis for a rotationally restrained functionally graded (FG) graphene nanoplatelets (GPLs) reinforced composite (FG-GPLRC) porous arch under a uniform step load where GPL nanofillers are uniformly dispersed while the porosity coefficient varies along the thickness direction of the arch. The effective material properties of the FG-GPLRC porous arch are determined by the volume fraction distribution of materials. Analytical solutions for the symmetric limit point dynamic buckling and anti-symmetric bifurcation dynamic buckling loads of rotationally restrained FG-GPLRC porous arches are derived by using an energy-based approach. Critical geometric parameters that determine the dynamic buckling mode switching behavior are also identified and discussed. Depending on the geometric parameters and the rotational restraint stiffness, the FG-GPLRC porous arch can buckle in either a symmetric limit point mode or an anti-symmetric bifurcation mode dynamically. It is also found that the dynamic buckling load of the arch can be considerably improved by adding a small amount of GPLs as reinforcing nanofillers. The influences of the porosity coefficients, GPL weight fractions, arch dimensions and geometries on the dynamic buckling behavior of rotationally restrained FG-GPLRC porous arches are comprehensively investigated through extensive parametric studies.

Volume 166
Pages 108103
DOI 10.1016/J.TWS.2021.108103
Language English
Journal Thin-walled Structures

Full Text