Analytica chimica acta | 2021

Measuring evaporation rate constants of highly volatile compounds for use in predictive kinetic models.

 
 
 

Abstract


A kinetic model was previously developed in our laboratory to predict evaporation of compounds as a function of gas chromatographic retention index (IT). To define the initial model, evaporation rate constants were experimentally determined for compounds in the range IT\xa0=\xa0800-1400\xa0at temperatures from 5 to 35\xa0°C. While the predictive accuracy was demonstrated, broader application of the model requires extension of the IT range to include more volatile compounds. However, such extension requires experimental determination of rate constants, which is challenging due to the explosive hazard and rapid evaporation of volatile compounds. In this work, rate constants of highly volatile compounds were experimentally determined and used to extend the kinetic model to predict evaporation. Prior to experimental evaporations, theoretical calculations were performed to optimize experimental parameters and to ensure that the vapor generated remained below the lower flammability limit for each compound. Compounds were then experimentally evaporated at three different temperatures (10, 20, and 30\xa0°C) and analyzed by gas chromatography-mass spectrometry. The evaporation rate constants for each compound, corrected for condensation, were determined by regression to a first-order rate equation. These rate constants were combined with previously collected data to extend the kinetic model at each temperature. Comparison of predicted and experimentally determined chromatograms of an evaporated validation mixture indicated good model performance, with correlation coefficients ranging from 0.955 to 0.997 and mean absolute percent errors in predicting abundance ranging from 3 to 26%.

Volume 1182
Pages \n 338932\n
DOI 10.1016/j.aca.2021.338932
Language English
Journal Analytica chimica acta

Full Text