Alcohol | 2019

Methylphenidate and alcohol effects on flash-evoked potentials, body temperature, and behavior in Long-Evans rats.

 
 
 

Abstract


Methylphenidate (MPD) is a psychostimulant used to treat attention deficit hyperactivity disorder (ADHD). Most adult ADHD patients use ethanol in combination with MPD. This research examined the effects of MPD and ethanol on flash-evoked potentials (FEPs; cortical responses frequently used to assess neural activity and sensory processing) recorded from the visual cortex (VC) and superior colliculus (SC; a structure involved in attention and orientation) of chronically implanted male Long-Evans rats, and on body temperature and open field behavior. For one group of rats, either saline or ethanol (2.0\xa0g/kg) was given 5\xa0min prior to either saline or MPD (2.9\xa0mg/kg). FEPs were recorded 10 and 20\xa0min later. In the VC, ethanol decreased amplitudes of several components, but increased P2. MPD increased N3, but decreased P3 and P4. Ethanol increased the latency of several components. In the SC, ethanol decreased all three components, while MPD increased P3. Ethanol increased latency of all components. During FEP testing, ethanol decreased body movement while MPD increased movement. In the open field, line crossings were increased but rearings were decreased by ethanol. Both ethanol and MPD produced hypothermia. A second group of rats was given MPD at 11.6\xa0mg/kg. Ethanol decreased several VC amplitudes, but increased P2. MPD increased N3 amplitude but decreased amplitude for other components. MPD also counteracted the effect of ethanol on the amplitude of P2 and N3. Both ethanol and MPD increased the latency of several components. In the SC, ethanol decreased all component amplitudes, while MPD increased P3 but decreased N4. Ethanol increased all component latencies, while MPD increased latency for two components. During FEP testing, ethanol decreased body movement while MPD increased movement. In the open field, line crossings were increased by ethanol and MPD. Rearings were eliminated by ethanol in the open field but increased by MPD, and MPD counteracted the effect of ethanol on rearings. Both ethanol and MPD produced hypothermia. Some of these results might help explain why users take MPD and ethanol in combination in order to enable consuming larger amounts of alcohol.

Volume 77
Pages \n 79-89\n
DOI 10.1016/j.alcohol.2018.10.009
Language English
Journal Alcohol

Full Text