Applied Catalysis B-environmental | 2021

Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water

 
 
 
 
 
 
 
 
 

Abstract


Abstract Surface engineering is an efficient way to enhance photoabsorption, promote charge separation and boost photocatalysis. Herein, sulfur-doped holey g-C3N4 nanosheets have been prepared through a universal self-templating approach with thiocyanuric acid as the single-precursor. By subtly controlling the feeding amount of precursor, the synthesized sulfur-doped holey g-C3N4 nanosheets exhibit excellent visible-light driven photocatalytic hydrogen production activity. The optimized catalyst presents a hydrogen evolution rate of 6225.4 μmol g−1h−1, with an apparent quantum yield of 10 % at 420 nm. Comprehensive characterizations and theoretical calculations suggest that the enhanced photocatalysis is attributed to the synergy of the enlarged surface area, the negatively-shifted conduction band, and the narrowed bandgap due to sulfur-doping and ultra-thin two-dimensional topology. This work highlights the importance of controlling the precursor dosage and inducing sulfur doping into the polymer, providing a promising and reliable strategy to simultaneously regulate the nanostructural and electronic structure of g-C3N4 for highly efficient photocatalysis.

Volume 284
Pages 119742
DOI 10.1016/j.apcatb.2020.119742
Language English
Journal Applied Catalysis B-environmental

Full Text