Aquatic toxicology | 2019

Variation in transcriptional responses to copper exposure across Daphnia pulex lineages.

 
 
 
 

Abstract


Copper pollution is pervasive in aquatic habitats and is particularly harmful to invertebrates sensitive to environmental changes such as Daphnia pulex. Mechanisms of toxicity and tolerance to copper are not well understood. We used RNA-sequencing to investigate these mechanisms in three genetically distinct D. pulex clonal lineages with different histories of copper exposure. Upregulated genes after copper exposure were enriched with Gene Ontology (GO) categories involved in digestion, molting and growth, whereas downregulated genes after copper exposure were enriched in the metal-regulatory system, immune response and epigenetic modifications. The three D. pulex clones in our study show largely similar transcriptional patterns in response to copper, with only a total of twenty genes differentially expressed in a single clonal lineages. We also detected lower relative expression of some genes known to be important for copper tolerance, metallothionein and glutathione-S-transferase, in a sensitive lineage sampled from an uncontaminated habitat. Daphnia-specific genes (without orthologs outside the genus) and Daphnia-specific duplications (genes duplicated in the Daphnia lineage) were overrepresented in differentially expressed genes, highlighting an important role for newly emerged genes in tolerating environmental stressors. The results indicate that the D. pulex lineages tested in this study generally respond to copper stress using the same major pathways, but that the more resistant clone with previous copper exposure might be better able to regulate key genes. This finding highlights the important nuances in gene expression among clones, shaped by historical exposure and influencing copper tolerance.

Volume 210
Pages \n 85-97\n
DOI 10.1016/j.aquatox.2019.02.016
Language English
Journal Aquatic toxicology

Full Text