Archives of oral biology | 2021

Multi-target pharmacological mechanisms of Salvia miltiorrhiza against oral submucous fibrosis: A network pharmacology approach.

 
 
 

Abstract


OBJECTIVES\nThe herb Salvia miltiorrhiza is used to treat oral submucous fibrosis (OSF); however, the mechanism underlying its efficacy has not been elucidated. As such, a network pharmacology-based approach was applied to investigate the potential mechanisms of Salvia miltiorrhiza against OSF.\n\n\nMATERIALS AND METHODS\nPotential targets of Salvia miltiorrhiza were collected by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine, and Swiss Target Prediction. Potential targets of OSF were collected from DisGeNET, GeneCards, and National Center for Biotechnology Information Gene database. Salvia miltiorrhiza against OSF targets protein-protein interaction and enrichment analyses network were constructed by Cytoscape and Metascape.\n\n\nRESULTS\nTwelve active ingredients from Salvia miltiorrhiza and 57 potential OSF-related targets were identified. The constructed network predicted seven potential key targets of Salvia miltiorrhiza for the treatment of OSF. Functional enrichment analysis showed that biological processes such as cellular response to drugs and pathways such as bladder cancer were mainly regulated by the Salvia miltiorrhiza active ingredient targets. Furthermore, the protein-protein interaction network demonstrated that the molecular complex detection components were mainly related to the ErbB signaling pathway, cancer pathways and IL-17 signaling.\n\n\nCONCLUSIONS\nA network approach was employed to document how Salvia miltiorrhiza active ingredients change various pathways against OSF. Salvia miltiorrhiza active ingredient targets against OSF involved CYP19A1, EGFR, PTPN11, ACHE, TERT, MAPK8 and PGR and were enriched in several signaling pathways.

Volume 126
Pages \n 105131\n
DOI 10.1016/j.archoralbio.2021.105131
Language English
Journal Archives of oral biology

Full Text