Journal of Asia-Pacific Entomology | 2021

Metabolomics reveals abundant flavonoids in edible insect Antheraea pernyi

 
 
 
 
 
 
 
 

Abstract


Abstract The natural flavonoids in foods of plant origin have been well-characterized due to their beneficial biological properties. However, the information regarding the flavonoid compounds in edible insects remains severely limited. In the present study, we used a metabolomics approach to identify the flavonoid compounds in the Chinese oak silkworm, Antheraea pernyi Guerin-Meneville (Lepidoptera: Saturniidae), an traditional edible insect. Our study identified over 200 flavonoid metabolites in the larval midgut of A. pernyi with LC-ESI-MS/MS system. These flavonoid metabolites come from eight subclasses, including flavones (1\xa00\xa03), flavonols (34), flavonoids (28), flavanones (20), polyphenols (19), isoflavones (9), anthocyanins (9), and proanthocyanidins (4). The relative content of the flavones is the most abundant, with a value of 36.74% of the total. The top five flavonoid components in A. pernyi are hyperoside, isoquercitroside, tricin 7-O-hexoside, hesperetin 5-O-glucoside and protocatechuic acid, accounting for 51.17% of the total flavonoids. Hyperoside is the most abundant flavonoid compound (18.07% of the total) in A. pernyi. Our findings indicated targeted metabolomics is a useful approach to identify flavonoids in edible insects which contain abundant flavonoids than we already knew.

Volume None
Pages None
DOI 10.1016/j.aspen.2021.06.004
Language English
Journal Journal of Asia-Pacific Entomology

Full Text