Brain, Behavior, and Immunity | 2021

Parasympathetic neural activity and the reciprocal regulation of innate antiviral and inflammatory genes in the human immune system

 
 

Abstract


The vagus nerve mediates parasympathetic nervous system control of peripheral physiological processes including cardiovascular activity and immune response. In mice, tonic vagal activation down-regulates inflammation via nicotinic acetylcholine receptor-mediated inhibition of the pro-inflammatory transcription factor NF-κB in monocyte/macrophages. Because Type I interferon and pro-inflammatory genes are regulated reciprocally at the level of transcription factor activation and cell differentiation, we hypothesized that vagal activity would up-regulate Type I interferon response genes concurrently with inflammatory downregulation in human immune cells. We mapped empirical individual differences in the circulating leukocyte transcriptome and vagal activity indexed by high frequency (0.15-0.40 Hz) heart rate variability (HF-HRV) in 380 participants in the Midlife in the US study. Here we show that promoter-based bioinformatics analyses linked greater HF-HRV to reduced NF-κB activity and increased activity of IRF transcription factors involved in Type I interferon response (independent of β-antagonists, BMI, smoking, heavy alcohol consumption, and demographic factors). Transcript origin analyses implicated myeloid lineage immune cells as targets, representing per-cell alterations in gene transcription as HF-HRV was not associated with differential prevalence of leukocyte subsets. These findings support the concept of parasympathetic inhibition of pro-inflammatory gene expression in humans and up-regulation of Type I interferons that could augment host defense against viral infections.

Volume 98
Pages 251-256
DOI 10.1016/j.bbi.2021.08.217
Language English
Journal Brain, Behavior, and Immunity

Full Text