Biochemical and biophysical research communications | 2019

Early prediction of the differentiation potential during the formation of human iPSC-derived embryoid bodies.

 
 
 
 
 
 
 

Abstract


Induced pluripotent stem cells (iPSCs) show huge variations in their differentiation potential, even in the same condition. However, methods for predicting these differentiation tendencies, especially in the early stage of differentiation, are still scarce. This study aimed to establish a simple and practical system to predict the differentiation tendency of iPSC lines using embryoid bodies (EBs) with identified parameters in the early stage. We compared four human iPSC lines in terms of the morphology and maintenance of EBs and their gene expression levels of specific markers for three germ-layers. Furthermore, the differentiation potentials of these iPSC lines into melanocytes, which are ectoderm-derived cells, were also compared and correlated with the above parameters. The results showed that iPSC lines forming regular, smooth, and not cystic EBs, which could be maintained in culture for a relatively longer time, also expressed higher levels of ectoderm-specific markers and lower levels of mesoderm/endoderm markers. Additionally, these iPSC lines showed greater potential in melanocyte differentiation using EB-based protocol, and the induced melanocytes expressed melanocytic markers and presented characteristics that were similar to those of normal human melanocytes. By contrast, iPSC lines that formed cystic EBs with bright or dark cavities and expressed relatively lower levels of ectoderm-specific markers failed in the melanocyte differentiation. Collectively, the differentiation tendency of human iPSC lines may be predicted by specific parameters in the EB stage. The formation and maintenance of optimal EBs and the expression of germ layer-specific markers are particularly important and practical for the prediction assay in the early stage.

Volume None
Pages None
DOI 10.1016/j.bbrc.2019.06.081
Language English
Journal Biochemical and biophysical research communications

Full Text