Behavioural Brain Research | 2021

Brain networks involved in place recognition based on personal and spatial semantics

 
 
 
 
 

Abstract


Have you ever been to Krakow? If so, then you may recognize the Wawel Royal Castle from a picture due to your personal semantic memory, which stores all autobiographically significant concepts and repeated events of your past. If not, then you might still recognize the Wawel Royal Castle and be able to locate it on a map due to your spatial semantic memory. When recognizing a familiar landmark, how does neural activity depend on your memory related to that place? To address this question, we combined a novel task - the Krakow paradigm - with fMRI. In this task, participants are presented with a set of pictures showing various Krakow landmarks, each followed by two questions - one about its location, and the other about seeing the place in real-life, to trigger spatial and/or personal semantic memory, respectively. Group independent component analysis of fMRI data revealed several brain networks sensitive to the task conditions. Most sensitive was the medial temporal lobe network comprising bilateral hippocampus, parahippocampal, retrosplenial, and angular gyri, as well as distinct frontal areas. In agreement with the contextual continuum perspective, this network exhibited robust stimulus-related activity when the two memory types were combined, medium for spatial memory, and the weakest for baseline condition. The medial prefrontal network showed the same, pronounced deactivation for spatial memory and baseline conditions, yet far less deactivation for places seen in real-life. This effect was interpreted as self-referential processes counterbalancing the suppression of the brain s default mode. In contrast, the motor, frontoparietal, and cingulo-opercular networks exhibited the strongest response-related activity for the spatial condition. These findings indicate that recognizing places based solely on general semantic knowledge requires more evidence accumulation, additional verbal semantics, and greater top-down control. Thus, the study imparts a novel insight into the neural mechanisms of place recognition. The Krakow paradigm has the potential to become a useful tool in future longitudinal or clinical studies.

Volume 398
Pages None
DOI 10.1016/j.bbr.2020.112976
Language English
Journal Behavioural Brain Research

Full Text