Bioorganic chemistry | 2021

Novel thiazolidine derivatives as potent selective pro-apoptotic agents.

 
 
 
 
 
 
 
 
 
 
 

Abstract


A series of 2-arylthiazolidine-4-carboxylic acid amide derivatives were synthesized and their cytotoxic activity against three cancer cell lines (PC-3, SKOV3 and MDA-MB231) was evaluated. Various structural modifications were tried including modifications of the length of the amide chain and modifications of the 2-aryl part using disubstituted phenyl and thiophene derivatives. The structure activity relationship was evaluated based on the in vitro biological evaluation against the above mentioned three cancer cell lines. The most selective compounds towards cancer cells were further evaluated against DLD-1, NCI-H520, Du145, MCF-7 and NCI-N87 cancer cells. The dodecyl amide having the 4-bromothienyl as the 2-aryl, compound 2e, exhibited the highest selectivity for cancer cells vs non-tumor cells. Mechanistic studies of the anticancer effect of compound 2e in prostate cancer PC-3 and colorectal cancer DLD-1 cells revealed that 2e could prevent the cell cycle in the G0/G1 phase by up-regulating the expression of p21 and reducing the expression of CDK2 and cyclin E. It increased the pro-apoptotic protein Bax and cleaved caspase 3, and down-regulated the expression of anti-apoptotic protein Bcl-2 to induce apoptosis. In addition, 2e also downregulated AKT, N-cadherin, and vimentin proteins expression giving indication that 2e inhibit the PI3K/AKT pathway to regulate cell cycle arrest and induce apoptosis, and can regulate the expression of epithelial-mesenchymal transition-related proteins.

Volume 114
Pages \n 105143\n
DOI 10.1016/j.bioorg.2021.105143
Language English
Journal Bioorganic chemistry

Full Text