Bioresource technology | 2019

Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis.

 
 
 
 
 
 
 

Abstract


The aim of this work was to study the pyrolysis behavior of castor oil, corn starch, soy protein, lignin, xylan, and cellulose. The pyrolysis behavior, gaseous product evolution, kinetics and thermodynamics of these model compounds were investigated via TG-FTIR under high heating rates. The TG/DTG curves showed that castor oil had the widest pyrolysis temperature zone and lignin had the highest residual rate. The apparent activation energy of these model compounds was calculated by Kissinger-Akahira-Sunose method. The kinetic results revealed that the average bond energy of chemical compositions was in the order of lipid\u202f>\u202flignin\u202f>\u202fstarch\u202f>\u202fcellulose\u202f>\u202fprotein\u202f>\u202fhemicellulose. The pre-exponential factor analysis showed that there were a large number of surface reactions for soy protein and xylan during pyrolysis, however other model compounds were not surface controlled. The thermodynamic parameters including G, ΔS, ΔH for six model compounds were also calculated.

Volume 278
Pages \n 287-295\n
DOI 10.1016/j.biortech.2019.01.102
Language English
Journal Bioresource technology

Full Text