Bioorganic & medicinal chemistry letters | 2021

A highly selective switch-on fluorescence sensor targeting telomeric dimeric G-quadruplex.

 
 

Abstract


The fluorescence probes with high selectivity and sensitivity for telomeric multimeric G-quadruplexes have attracted much attention. Nevertheless, few small molecules have exhibited telomeric multimeric G-quadruplexes recognition specificity. Thus, there is an urgent demand to develop specific fluorescence probes for telomeric multimeric G-quadruplexes. We reported herein the specific sensing of telomeric dimeric G-quadruplex TTA45 via a fluorescence light-up response using a commercially available triazine derivative HPTA-1 as a probe. HPTA-1 could discriminate the telomeric dimeric G-quadruplex TTA45 against other types of DNA structures accompanied by a drastic enhancement of the emission intensity without compromising the conformation and stability. Compared with most multimeric G-quadruplex recognition ligands, HPTA-1 had much simpler structure and lower molecular weight. The binding mechanism studies suggested that the distinct fluorescence response was caused by electrostatic and π-π stacking interactions of HPTA-1 with the pocket between two G-quadruplex units of telomeric dimeric G-quadruplex TTA45..

Volume None
Pages \n 127971\n
DOI 10.1016/j.bmcl.2021.127971
Language English
Journal Bioorganic & medicinal chemistry letters

Full Text