Biophysical chemistry | 2021

An interpretable machine learning method for homo-trimeric protein interface residue-residue interaction prediction.

 
 
 

Abstract


Protein-protein interaction plays an important role in life activities. A more fine-grained analysis, such as residues and atoms level, will better benefit us to understand the mechanism for inter-protein interaction and drug design. The development of efficient computational methods to reduce trials and errors, as well as assisting experimental researchers to determine the complex structure are some of the ongoing studies in the field. The research of trimer protein interface, especially homotrimer, has been rarely studied. In this paper, we proposed an interpretable machine learning method for homo-trimeric protein interface residue pairs prediction. The structure, sequence, and physicochemical information are intergraded as feature input fed to model for training. Graph model is utilized to present spatial information for intra-protein. Matrix factorization captures the different features interactions. Kernel function is designed to auto-acquire the adjacent information of our target residue pairs. The accuracy rate achieves 54.5% in an independent test set. Sequence and structure alignment exhibit the ability of model self-study. Our model indicates the biological significance between sequence and structure, and could be auxiliary for reducing trials and errors in the fields of protein complex determination and protein-protein docking, etc. SIGNIFICANCE: Protein complex structures are significant for understanding protein function and promising functional protein design. With data increasing, some computational tools have been developed for protein complex residue contact prediction, which is one of the most significant steps for complex structure prediction. But for homo-trimeric protein, the sequence-based deep learning predictors are infeasible for homologous sequences, and the algorithm black box prevents us from understanding of each step operation. In this way, we propose an interpreting machine learning method for homo-trimeric protein interface residue-residue interaction prediction, and the predictor shows a good performance. Our work provides a computational auxiliary way for determining the homo-trimeric proteins interface residue pairs which will be further verified by wet experiments, and and gives a hand for the downstream works, such as protein-protein docking, protein complex structure prediction and drug design.

Volume 278
Pages \n 106666\n
DOI 10.1016/j.bpc.2021.106666
Language English
Journal Biophysical chemistry

Full Text