Brain Research Bulletin | 2021

Exendin-4 induces a novel extended effect of ischemic tolerance via crosstalk with IGF-1R

 
 
 
 
 

Abstract


Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonist exendin-4 (Ex-4), a drug that has been used in the clinical treatment of type 2 diabetes mellitus, also confers a neuroprotective effect against stroke. Although GLP-1 analogs were reported to induce sustained insulin secretion and glucose tolerance improved after cessation of treatment, no study has revealed whether Ex-4 exerts sustained neuroprotection against stroke and the underlying mechanism after treatment cessation. In this study, mice were pretreated with Ex-4 for 7 days, and middle cerebral artery occlusion (MCAO) was performed on different days after cessation of Ex-4 treatment. Ex-4 ameliorated neurological dysfunction and reduced the infarct volume induced by MCAO. These protective effects lasted for 6 days after the cessation of Ex-4 treatment and were associated with sustained upregulation of PI3K, AKT, mTOR, and HIF-1α levels, as well as HIF-1α downstream genes. Knockdown of GLP-1R or HIF-1α in the brain by short hairpin RNA abolished Ex-4 treatment-mediated neuroprotection. In normal mice, Ex-4 treatment led to instant upregulation of p-PI3K, p-AKT, p-mTOR, and HIF-1α expression levels, which quickly returned to normal after cessation of Ex-4 treatment, while the expression levels of insulin growth factor-1 receptor (IGF-1R) remained high for 6 days after Ex-4 cessation. Additionally, Ex-4 did not directly induce IGF-1 production, which was only induced by MCAO. Ex-4 induces extended cerebral ischemic tolerance. This neuroprotective effect is associated with activation of GLP-1R and upregulation of IGF-1R in the brain, and the latter then activates the PI3K/AKT/mTOR/HIF-1 signaling pathway via binding to IGF-1 secreted from the ischemic brain.

Volume 169
Pages 145-155
DOI 10.1016/j.brainresbull.2020.11.008
Language English
Journal Brain Research Bulletin

Full Text