Brain Research | 2019

Maresin 1 attenuates the inflammatory response and mitochondrial damage in mice with cerebral ischemia/reperfusion in a SIRT1-dependent manner

 
 
 
 
 

Abstract


Maresin 1 (MaR1) confers brain-protective effects against cerebral ischemia/reperfusion (I/R) injury. Activation of silent information regulator 1 (SIRT1) signaling has also been demonstrated to inhibit cerebral I/R injury. We hypothesize that MaR1 may protect against cerebral I/R injury by activating SIRT1 signaling. The present study investigated the protective effect of MaR1 treatment on cerebral I/R injury and elucidated the potential mechanisms. Mice were exposed to the treatment in the presence or absence of MaR1 or the SIRT1 inhibitor EX527 and then subjected to the middle cerebral artery occlusion (MCAO) operation. MaR1 conferred a brain-protective effect by up-regulating SIRT1 and Bcl2 expression, down-regulating acetylated neuclear factor kappaB (AC-NF-κB) and Bax expression, reducing pro-inflammatory factor levels (IL-1, IL-6 and TNF-α), increasing the mitochondrial membrane potential, and diminishing neuronal degeneration, the infarct size and the neurological defects of cerebral I/R. These protective effects were partially blocked by the SIRT1 inhibitor EX527, indicating that SIRT1 signaling might be specifically involved in the protection provided by MaR1 against cerebral I/R injury. In summary, our results demonstrate that MaR1 treatment attenuates cerebral I/R injury by reducing inflammatory responses and mitochondrial damage via activation of SIRT1 signaling.

Volume 1711
Pages 83-90
DOI 10.1016/j.brainres.2019.01.013
Language English
Journal Brain Research

Full Text