Current Applied Physics | 2021

Effect of precursor concentration and post-annealing temperature on (040) oriented tin sulfide thin films deposited on SLG/Mo substrates by spin coating

 
 
 

Abstract


Abstract SnS is a layered material that crystallizes in an orthorhombic structure. This hinders the formation of a dense, pinhole-free morphology. The present study demonstrated the deposition of SnS thin films on soda-lime glass (SLG) and SLG/Mo substrates by spin-coating approach. The developed films were subsequently applied for the fabrication of a thin-film solar cell. The effect of the annealing temperature on the structural, optical, and morphological properties of the deposited SnS films was analyzed. The precursor concentrations and the annealing temperature played a critical role in determining the phase composition and morphological characteristics of the SnS thin films. TFSC with SLG/Mo/SnS/CdS/i-ZnO/AZO/Al configuration was fabricated using the optimal precursor ratio, i.e., Sn: S = 1:1.2, and this device showed a photoconversion efficiency of 0.076%. The reasons for the poor performance of the device were addressed in detail, and the scope for future research to optimize the device performance was elucidated.

Volume 21
Pages 89-95
DOI 10.1016/j.cap.2020.10.009
Language English
Journal Current Applied Physics

Full Text