Chinese Chemical Letters | 2019

The adsorption of acidic gaseous pollutants on metal and nonmetallic surface studied by first-principles calculation: A review

 
 
 
 
 
 

Abstract


Abstract The acidic gases such as SO2, NOx, H2S and CO2 are typical harmful pollutants and greenhouse gases in the atmosphere, which are also the main sources of PM2.5. The most widely used method of treating these gas molecules is to capture them with different adsorption materials, i.e., metal and nonmetallic materials such as MnO2, MoS2 and carbon-based materials. And doping transition metal atoms in adsorption materials are beneficial to the gas adsorption process. The first-principles calculation is a powerful tool for studying the adsorption properties of contaminant molecules on different materials at the molecular and atomic levels to understand surface adsorption reactions, adsorption reactivity, and structure-activity relationships which can provide theoretical guidance for laboratory researches and industrial applications. This review introduces the adsorption models and surface properties of these gas molecules on metal and nonmetallic surfaces by first-principles calculation in recent years. The purpose of this review is to provide the theoretical guidance for experimental research and industrial application, and to inspire scientists to benefit from first-principles calculation for applying similar methods in future work.

Volume 30
Pages 2123-2131
DOI 10.1016/j.cclet.2019.09.043
Language English
Journal Chinese Chemical Letters

Full Text