Coordination Chemistry Reviews | 2021

Perovskite oxides as supercapacitive electrode: Properties, design and recent advances

 
 
 
 

Abstract


Abstract For a sustainable future, high rate supercapacitor is prerequisite and may soon dominate the electric market. In a carbon conquered world of supercapacitors, redox active electrode materials are a fresh breath to meet the commercial demand of high energy density. However, the pitiable cyclic stability and slow charge storage kinetics hinders their commercialization. Therefore, extensive research has been committed in suppression of these hurdles. Perovskite oxide based electrodes appear as a solution ascribed to their composition/structural stability that not only allows storage of hefty energy but also ensures high rate of delivery. This review aims to summarize the recent progress in perovskite oxides as supercapacitor electrode materials. Based on the charge storage mechanism, an improved understanding about the role of constituent elements is discussed for further modification in charge storage characteristics. An attempt is made to uncover the key parameters in designing of an ideal perovskite electrode material. Recent developments in perovskites oxides by modification in their targeted physical and chemical properties are also highlighted. Further, at the end a perspective is given by keeping in view the associated challenges in designing of high rate perovskite oxide based supercapacitor.

Volume 431
Pages 213680
DOI 10.1016/j.ccr.2020.213680
Language English
Journal Coordination Chemistry Reviews

Full Text