Cellular signalling | 2019

Sustained GRK2-dependent CREB activation is essential for α2-adrenergic receptor-induced PC12 neuronal differentiation.

 
 
 
 
 
 
 
 
 
 

Abstract


Many aspects of neuronal development, such as neuronal survival and differentiation, are regulated by the transcription factor cAMP-response element-binding protein (CREB). We have previously reported that α2-adrenergic receptors (ARs), members of the G protein-coupled receptor (GPCR) superfamily, induce neuronal differentiation of rat pheochromocytoma (PC)-12 cells in a subtype-specific manner, i.e. α2A<α2B<α2C. Herein, we sought to investigate CREB`s involvement in this α2AR-dependent neurogenic process. We used a combination of gene reporter assays and immunoblotting analysis, coupled with co-immunoprecipitation and morphological analysis, in transfected PC12 cell lines. Chronic α2B- or α2C-AR activation results in sustained CREB activation, which is both necessary and sufficient for neuronal differentiation of PC12 cells expressing these two α2ARs. In contrast, chronic α2A activation only leads to transient CREB activation, insufficient for PC12 neuronal differentiation. However, upon CREB overexpression, α2A-AR triggers neuronal differentiation similarly to α2B- or α2C-ARs. Importantly, NGF (Nerve Growth Factor)`s TrkA receptor transactivation is essential for the sustained activation of CREB by all three α2 subtypes in PC12 cells, whereas protein kinase A (PKA), the prototypic kinase that phosphorylates CREB, is not. Instead, TrkA-activated GPCR-kinase (GRK)-2 mediates the sustained CREB activation during α2AR-induced neuronal differentiation of PC12 cells. Catecholaminergic-induced neuronal differentiation of PC12 cells through α2ARs uses a non-canonical pathway involving TrkA transactivation and subsequent GRK2-dependent, sustained phosphorylation/activation of CREB. These findings provide novel insights into catecholaminergic neurogenesis and suggest that α2AR agonists, combined with NGF analogs or GRK2 stimulators, may exert neurogenic/neuroprotective effects.

Volume None
Pages \n 109446\n
DOI 10.1016/j.cellsig.2019.109446
Language English
Journal Cellular signalling

Full Text