Chemosphere | 2021

Effects of cations on biofilm formation and characteristics in integrated fixed film activated sludge process at different carbon and nitrogen loadings.

 
 

Abstract


Both divalent cations including calcium and magnesium play important roles for microbial aggregates in binding to negatively charged functional groups on bacterial surfaces, in extracellular polymeric substances (EPS), and on inorganic materials in flocs and biofilms. Monovalent cations such as sodium and potassium deteriorate the floc structure and physical properties. The Integrated Fixed Activated Sludge (IFAS) process employs fixed film media in the aerobic zone; therefore, both monovalent and divalent cations are involved in the process performances. In this study, the effects of cations indicated as the monovalent to divalent cations (M/D) ratio on the biofilm formation and characteristics, and on the IFAS performances for carbon and ammonium removals were evaluated. The experiments were conducted in three IFAS systems feeding with the same wastewater but different M/D ratios and two carbon and nitrogen loadings. The findings revealed that high monovalent with low divalent cations at the M/D ratios higher than 2.0 produced excessive polysaccharides in EPS resulting in high viscosity of activated sludge flocs causing viscous bulking with high SVI values, decreasing the biofilm formation, and increasing the biofilm sloughing. Increasing of both monovalent and carbon loading increased more polysaccharides in the EPS leading to the failures of IFAS system. Nitrification failed at higher M/D ratios because of less nitrifiers in flocs and biofilm. The M/D ratio less than 2.0 is suggested to minimize the excessive EPS production in the IFAS system, especially at high organic loading.

Volume 275
Pages \n 130002\n
DOI 10.1016/j.chemosphere.2021.130002
Language English
Journal Chemosphere

Full Text