Chemosphere | 2021

Selective photocatalytic reduction of selenate over TiO2 in the presence of nitrate and sulfate in mine-impacted water.

 
 
 
 

Abstract


Selenium contamination is a critical global issue across numerous industries. Industrial waters such as mine-impacted water (MIW) can contain toxic levels of selenate, in addition to varying concentrations of many different dissolved species from the underlying strata, such as sulfate, carbonate, nitrate, organic matter, and many dissolved metals. The removal of selenate from MIW is desired, due to selenate s acute and chronic toxicity in aquatic ecosystems at elevated concentrations. However, due to the complexity of the water matrix and the presence of many other dissolved constituents, this is often very challenging. In this study, we present for the first time the reduction of selenate in a real industrial wastewater, namely MIW, and reveal a significant advantage of photocatalytic reduction; the ability to selectively reduce selenate from >500\xa0μg\xa0L-1 to <2\xa0μg\xa0L-1 in the presence of the more energetically favourable electron acceptor, nitrate (250× molar concentration of selenate) and high concentrations of sulfate (1,940× molar concentration of selenate). The presence and impacts of sulfate, chloride, carbonate, and nitrate on the competitive adsorption and reduction of selenate on TiO2 are thoroughly investigated for the first time, using formic acid as an electron hole scavenger. The electron transfer mechanism proposed follows TiO2 conduction band electrons are responsible for the reduction of selenate to elemental Se (Se0) and both carbon dioxide radicals (CO2·-) and Se conduction band electrons are responsible for the further reduction of Se0 to hydrogen selenide (H2Se).

Volume 287 Pt 1
Pages \n 131951\n
DOI 10.1016/j.chemosphere.2021.131951
Language English
Journal Chemosphere

Full Text