Chemosphere | 2021

Strengthening anoxic glycogen consumption in SNEDPR-CW as a strategy to control PAO-GAO competition under carbon limited condition.

 
 
 
 
 
 
 

Abstract


Cooperation between Phosphate and Glycogen Accumulating Organisms (PAOs and GAOs) plays a pivotal role in nutrients removal in simultaneous nitrification endogenous denitrification and phosphorous removal (SNEDPR) systems. Recent findings have expanded the application of SNEDPR from activated sludge system to constructed wetland (CW). However, how to regulate competition between PAOs and GAOs in SNEDPR-based CW is still unclear. Here we showed that, GAOs could easily gain dominance over PAOs in SNEDPR-CW under alternating anaerobic/aerobic (A/O) operational mode. Shortening aerobic hydraulic retention time (HRT) at low oxygen concentration was benefit for simultaneous nitrification endogenous denitrification (SNED) and denitrifying dephosphatation but would reduce the overall phosphorus uptake rate and lead to high phosphorus effluent concentrations. Extended aerobic HRT promoted the proliferation of aerobic GAOs over PAOs, decreasing both enhanced biological phosphorus removal (EBPR) and SNED performance. Surprisingly, by switching the operation of system to alternating anaerobic/aerobic/anoxic (A/O/A) mode, an extraordinary nutrients removal performance with mean nitrogen and phosphorus removal efficiency of 84.57% and 89.37% was achieved under carbon sources limited condition. Stoichiometric analysis demonstrated that adding anoxic stage strengthened the intracellular glycogen oxidization of GAOs for denitrification which compromised its subsequent anaerobic carbon sources uptake and PHA storage and provided sufficient carbon sources for PAOs. Microbial community analysis showed that numerical ratio of GAOs to PAOs decreased from 6.67 under A/O to 4.89 under A/O/A mode, which further indicated strengthening glycogen denitrification of GAOs should be an effective way to regulate microbial competition in order to obtain a desired nutrients removal performance in SNEDPR-CW.

Volume None
Pages \n 132617\n
DOI 10.1016/j.chemosphere.2021.132617
Language English
Journal Chemosphere

Full Text