Chem | 2021

Visible-light photoredox-catalyzed selective carboxylation of C(sp3)−F bonds with CO2

 
 
 
 
 
 
 
 
 
 

Abstract


Summary It is highly attractive and challenging to utilize carbon dioxide (CO2), because of its inertness, as a nontoxic and sustainable C1 source in the synthesis of valuable compounds. Here, we report a novel selective carboxylation of C(sp3)−F bonds with CO2 via visible-light photoredox catalysis. A variety of mono-, di-, and trifluoroalkylarenes as\xa0well as α,α-difluorocarboxylic esters and amides undergo such reactions to give important aryl acetic acids and α-fluorocarboxylic acids, including several drugs and analogs, under mild conditions. Notably, mechanistic studies and DFT calculations demonstrate the dual role of CO2 as an electron carrier and electrophile during this transformation. The fluorinated substrates would undergo single-electron reduction by electron-rich CO2 radical anions, which are generated in situ from CO2 via sequential hydride-transfer reduction and hydrogen-atom-transfer processes. We anticipate our finding to be a starting point for more challenging CO2 utilization with inert substrates, including lignin and other biomass.

Volume None
Pages None
DOI 10.1016/j.chempr.2021.08.004
Language English
Journal Chem

Full Text