Journal of chromatography. A | 2021

Unraveling the Complex Olefin Isomer Mixture Using Two-Dimensional Gas Chromatography-Photoionization-Time of Flight Mass Spectrometry.

 
 
 
 
 

Abstract


Commercial dodecenes are a complex chemical mixture with a majority of C12 olefins and minority of C8-18 olefins. Structurally, dodecene products may consist of straight-chain alkenes, branched alkenes, as well as cyclic hydrocarbons. Due to the difference of feeds and catalysts used in the oligomerization reaction, the composition of the dodecenes is complex and their properties are very different. Knowing the complex composition of dodecenes can help tune the production process and select the appropriate products according to their end use. To reveal the complex profile of dodecenes, an analytical method using two-dimensional gas chromatography (GC×GC) coupled photoionization (PI) - time of flight mass spectrometry (TOFMS) was developed in this study. A conventional (nonpolar\xa0×\xa0polar) column combination (non-polar column as 1st dimension and mid-polar column as 2nd dimension) was selected. The analytical condition of GC was optimized using fractional factorial experimental design (DoE). Olefin congener grouping by carbon chain length and double bond equivalent (DBE) was achieved based on the detection of molecular ions by PI-TOFMS. Grouping of dodecenes by linear, mono-branched, di- and tri-branched subgroups was achieved based on branching index (BI) under the assumption of no retention time (RT) overlap among subgroups. Certain dodecene isomers were identified by retention index (RI) and further confirmed by PI mass spectra. The information altogether provided a multimodal characterization possibility to be used with statistical tools. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) of seventeen dodecene samples explained the composition variance between catalysts solid phosphoric acid and zeolite, as well as between feeds with C4 and without C4.

Volume 1645
Pages \n 462103\n
DOI 10.1016/j.chroma.2021.462103
Language English
Journal Journal of chromatography. A

Full Text