Journal of chromatography. A | 2021

In situ fabrication of chiral covalent triazine frameworks membranes for enantiomer separation.

 
 
 
 
 

Abstract


Rapid and high-flux enantiomer separation is significant for drug development. Membrane separation technology provides promising approaches for enantiomer separations. Porous membrane with good selectivity and high permeability is an ideal choice for enantiomer separations. Herein, we demonstrate the preparation of a novel two-dimensional chiral covalent triazine frameworks (CCTF) membrane by in situ growth method. Inheriting the strong chirality and specific interactions from CCTF, the CCTF membranes exhibited good enantioselectivity for drug intermediates and drug, including (R)/(S)-1-phenylethanol, (R)/(S)-1,1 -binaphthol and (R)/(S)-ibuprofen. Under optimal separation conditions, the enantiomeric excess value (e.e %) was above 21.7 % for (R)/(S)-1-phenylethanol, 12.0% for (R)/(S)-1,1 -binaphthol and 9.7 % for (R)/(S)-ibuprofen. The mechanism of the CCTF recognizing enantiomers were simulated by quantum mechanical calculations. In addition, the mechanism was also proved by the separation of enantiomers using this CCTF-modified silica column in liquid chromatography. The CCTF membrane may bring about the potentially application for large-scale production of chiral compounds. Meanwhile, this work provides a theoretical guidance for the application of CCOFs in enantiomer separation.

Volume 1654
Pages \n 462475\n
DOI 10.1016/j.chroma.2021.462475
Language English
Journal Journal of chromatography. A

Full Text