Colloids and surfaces. B, Biointerfaces | 2021

Investigation of the antifouling properties of polyethersulfone ultrafiltration membranes by blending of boron nitride quantum dots.

 
 
 
 
 
 
 

Abstract


This study aims to investigate the modification of polyethersulfone (PES) membrane with boron nitride quantum dots (BNQD) for improving the antifouling performance. The composite membranes were synthesized by blending different amounts of BNQD (0.50, 1.00, and 2.00 wt.%) into PES with the non-solvent induced phase separation (NIPS) method. UV-vis absorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize BNQD. Moreover, porosity, pore size, contact angle, permeability, bovine serum albumin (BSA) rejection, and antifouling properties were determined for composite membranes. The enhanced biological activity of BNQD was investigated based on antioxidant, antimicrobial, anti-biofilm, bacterial viability inhibition, and DNA cleavage studies. The BNQD showed 19.35 % DPPH radical scavenging activity and 76.45 % ferrous ion chelating activity at 500 mg/L. They also exhibited good chemical nuclease activity at all concentrations. BNQD had moderate antibacterial activity against all tested microorganisms. Biofilm inhibition percentage of BNQD was determined as 82.31 % at 500 mg/L. Cell viability assay demonstrated that the BNQD showed strong cell viability inhibition 99.9 % at the concentration of 1000 mg/L. The porosity increased from 56.83 ± 1.17%-61.83 ± 1.17 % while BNQD concentration increased from 0 to 2.00 wt%. Moreover, the hydrophilicity of BNQD nanocomposite membranes also increased from 75.42 ± 0.56° to 65.34 ± 0.25°. The mean pore radius is far slightly changed from 16.47 ± 0.35 nm to 19.16 ± 0.22 nm. The water flux increased from 133.5 ± 9.5 L/m2/h (for pristine membrane) to 388.6 ± 18.8 L/m2/h (for PES/BNQD 2.00 wt% membrane). BSA flux increased from 38.8 ± 0.9 L/m2/h to 63.2 ± 2.7 L/m2/h up to 1.00 wt% amount of BNQD nanoparticles.

Volume 205
Pages \n 111867\n
DOI 10.1016/j.colsurfb.2021.111867
Language English
Journal Colloids and surfaces. B, Biointerfaces

Full Text