Colloids and surfaces. B, Biointerfaces | 2021

Sustained-Release Hydrogel-Based Rhynchophylline Delivery System Improved Injured Tendon Repair.

 
 
 
 

Abstract


During the injured flexor tendon healing process, tendon tissue is easy to form extremely dense adhesion with the surrounding tissue, which causes the serious influence of hand function recovery. Uncaria is widely used in clinic and its main composition, Rhynchophylline (Rhy), has been reported on its good therapeutic effect, which could effectively inhibit the intra-abdominal adhesion formation. However, the therapeutic effect of Rhy on tendon healing and adhesion formation is still unclear. Due to the short half-life of Rhy, hyaluronic acid (HA) sustained-release system for Rhy delivery was constructed and it could also avoid drug from the undesired loss during the transit. After Rhy delivery system was applied around the injured tendons, adhesion formation, gliding function and healing strength of tendons were evaluated. Our results showed that the gliding excursion and healing strength of repaired tendons were both significantly increased, as well as the adhesion was inhibited. From in vivo experiments, Rhy could be able to increase the expression of Col Ⅰ/Col Ⅲ and helped fibroblasts to ordered organization for tendon tissues. But for adhesion tissues, Rhy promoted the apoptosis and accelerated the degradation of extracellular matrix. In vitro study showed Rhy could help tenocytes stimulated with TGF-β1 to recover to normal cell functions involving cell proliferation and apoptosis level. Through high-throughput sequencing, we found that Rhy was involved in the regulation of Extracellular Matrix (ECM) signaling pathway. We draw a conclusion that Rhy enhanced the tendon healing and prevented adhesion formation through inhibiting the phosphorylation of Smad2. In a word, this sustained release system of Rhy may be a promising strategy for the treatment of injured tendons.

Volume 205
Pages \n 111876\n
DOI 10.1016/j.colsurfb.2021.111876
Language English
Journal Colloids and surfaces. B, Biointerfaces

Full Text