Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society | 2021

MA-SOCRATIS: An automatic pipeline for robust segmentation of the left ventricle and scar.

 
 
 
 
 
 

Abstract


Multi-atlas segmentation of cardiac regions and total infarct scar (MA-SOCRATIS) is an unsupervised automatic pipeline to segment left ventricular myocardium and scar from late gadolinium enhanced MR images (LGE-MRI) of the heart. We implement two different pipelines for myocardial and scar segmentation from short axis LGE-MRI. Myocardial segmentation has two steps; initial segmentation and re-estimation. The initial segmentation step makes a first estimate of myocardium boundaries by using multi-atlas segmentation techniques. The re-estimation step refines the myocardial segmentation by a combination of k-means clustering and a geometric median shape variation technique. An active contour technique determines the unhealthy and healthy myocardial wall. The scar segmentation pipeline is a combination of a Rician-Gaussian mixture model and full width at half maximum (FWHM) thresholding, to determine the intensity pixels in scar regions. Following this step a watershed method with an automatic seed-points framework segments the final scar region. MA-SOCRATIS was evaluated using two different datasets. In both datasets ground truths were based on manual segmentation of short axis images from LGE-MRI scans. The first dataset included 40 patients from the MS-CMRSeg 2019 challenge dataset (STACOM at MICCAI 2019). The second is a collection of 20 patients with scar regions that are challenging to segment. MA-SOCRATIS achieved robust and accurate performance in automatic segmentation of myocardium and scar regions without the need of training or tuning in both cohorts, compared with state-of-the-art techniques (intra-observer and inter observer myocardium segmentation: 81.9% and 70% average Dice value, and scar (intra-observer and inter observer segmentation: 70.5% and 70.5% average Dice value).

Volume 93
Pages \n 101982\n
DOI 10.1016/j.compmedimag.2021.101982
Language English
Journal Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society

Full Text