Critical reviews in oncology/hematology | 2021

Targeting TRK: A Fast-Tracked Application of Precision Oncology and Future Directions.

 
 
 

Abstract


The NTRK genes encode the tropomyosin-related receptor tyrosine kinases TrkA, TrkB and TrkC. TRK receptors regulate the proliferation, differentiation, and survival of many neuronal and non-neuronal glial cells during embryogenesis, thus playing a critical role in synaptic plasticity and the development of nociceptive pathways. Recurrent genomic alterations in NTRK genes, typically fusions involving the 3 region encoding the kinase domain juxtaposed to 5 sequences from numerous partner genes, occur at a low frequency in a wide diversity of adult and pediatric cancers. The contributions of the resulting constitutively activated kinase to oncogenesis and cancer progression are being elucidated. Larotrectinib and entrectinib are potent first-generation TRK inhibitors with IC50 values in the nanomolar range across cancer cell lines harboring NTRK fusions. Larotrectinib is highly selective for TRK receptors, whereas entrectinib also potently inhibits ROS1 and ALK. Clinical trials of both drugs demonstrated significant and durable responses in patients with tumors harboring NTRK alterations, leading to first of its kind cancer agnostic FDA approvals in the United States for drugs targeting a genomic alteration. Unfortunately, acquired resistance inevitably develops. The second-generation TRK inhibitors selitrectinib and repotrectinib are designed to overcome known mechanisms of resistance.

Volume None
Pages \n 103451\n
DOI 10.1016/j.critrevonc.2021.103451
Language English
Journal Critical reviews in oncology/hematology

Full Text