Ecotoxicology and environmental safety | 2021

Ethylene participates in zinc oxide nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings.

 
 
 
 
 
 
 
 
 

Abstract


Nowadays, the applications of engineered nanoparticles (ENPs) have been significantly increased, thereby negatively affecting crop production and ultimately contaminating the food chain worldwide. Zinc oxide nanoparticles (ZnO NPs) induced oxidative stress has been clarified in previous studies. But until now, it has not been investigated that how ethylene mediates or participates in ZnO NPs-induced toxicity and related cellular ultrastructural changes in rice seedlings. Here, we reported that 500\xa0mg/L of ZnO NPs reduced the fresh weight (54.75% and 55.64%) and dry weight (40.33% and 47.83%) in shoot and root respectively as compared to control. Furthermore, ZnO NPs (500\xa0mg/L) reduced chlorophyll content (72% Chla, 70% Chlb), induced the stomatal closure and ultrastructural damages by causing oxidative stress in rice seedlings. These cellular damages were significantly increased by exogenous applications of ethylene biosynthesis precursor (ACC) in the presence of ZnO NPs. In contrary, ZnO NPs induced damages on the above-mentioned attributes were reversed through the exogenous supply of ethylene signaling and biosynthesis antagonists such as silver (Ag) and cobalt (Co) respectively. Interestingly, ZnO NPs accelerate ethylene biosynthesis by up-regulating the transcriptome of ethylene biosynthesis responsive genes. The antioxidant enzymes activities and related gene expressions were further increased in ethylene signaling and biosynthesis associated antagonists (Ag and Co) treated seedlings as compared to sole ZnO NPs treatments. In contrary, the above-reported attributes were further decreased by ACC together with ZnO NPs. In a nutshell, ethylene effectively contributes in ZnO NPs induced toxicity and causing ultrastructural and stomatal damage in rice seedlings. Such findings could have potential implications in producing genetic engineered crops, which will be able to tolerate nanoparticles toxicity in the environment.

Volume 226
Pages \n 112844\n
DOI 10.1016/j.ecoenv.2021.112844
Language English
Journal Ecotoxicology and environmental safety

Full Text