European journal of medicinal chemistry | 2019

Identification of benzo[cd]indol-2(1H)-ones as novel Atg4B inhibitors via a structure-based virtual screening and a novel AlphaScreen assay.

 
 
 
 
 

Abstract


Targeting autophagy is a promising therapeutic strategy for cancer treatment. As a result, the identification of novel autophagy inhibitors is an emerging field of research. Herein, we report the development of a novel AlphaScreen HTS assay that combined with a MS-based assay and a structure-based high-throughput virtual screening have enabled the identification of benzo[cd]indol-2(1H)-one as a novel scaffold that targets Atg4B. Thus, an initial screening campaign led to the identification of NSC126353 and NSC611216 bearing a chlorohydrin moiety. Structural-activity relationship analysis of the initial hits provided an optimized lead, compound 33, bearing a 7-aminobenzo[cd]indol-2-[1H]-one scaffold and a propyl group replacing the chlorine. Inhibition of autophagy was also investigated in cells by measuring LC3-II and p62 protein levels. Moreover, the synergistic effect of 33 combined with oxaliplatin resulted in an enhanced cell death in the human colorectal adenocarcinoma cell line HT-29. We are convinced that the developed AlphaScreen and MS-based assays can be key tools enabling the high-throughput identification of novel Atg4B inhibitors. Moreover, the aminobenzo[cd]indol-2-[1H]-one scaffold represents a novel chemotype for the further development of small molecule inhibitors of Atg4B.

Volume 178
Pages \n 648-666\n
DOI 10.1016/j.ejmech.2019.05.086
Language English
Journal European journal of medicinal chemistry

Full Text