European Journal of Radiology Open | 2021

Intravenous enhanced 3D FLAIR imaging to identify CSF leaks in spontaneous intracranial hypotension: Comparison with MR myelography

 
 
 
 
 
 
 

Abstract


Purpose To evaluate the clinical utility of intravenous gadolinium-enhanced heavily T2-weighted 3D fluid-attenuated inversion recovery (HT2-FLAIR) imaging for identifying spinal cerebrospinal fluid (CSF) leaks in patients with spontaneous intracranial hypotension (SIH). Methods Patients with SIH underwent MR myelography and post-contrast HT2-FLAIR imaging after an intravenous gadolinium injection. Two types of CSF leaks (epidural fluid collection and CSF leaks around the nerve root sleeve) at each vertebral level were compared between the 2 sequences. The total numbers of CSF leaks and vertebral levels involved were recorded for the whole spine. The sequence that was superior for the overall visualization of epidural and paraspinal fluid collection was then selected. Results Nine patients with SIH were included in the present study. HT2-FLAIR imaging was equivalent or superior to MR myelography at each level for detecting the 2 types of CSF leaks. In the 2 types of CSF leaks, the total numbers of CSF leaks and levels involved were higher on HT2-FLAIR images than on MR myelography, while no significant difference was observed for CSF leaks around the nerve root sleeve. In all 9 patients, HT2-FLAIR imaging was superior to MR myelography for the overall visualization of epidural and paraspinal fluid collection. Conclusion Intravenous gadolinium-enhanced HT2-FLAIR imaging was superior to MR myelography for the visualization of CSF leaks in patients with SIH. This method can be useful for identifying spinal CSF leaks.

Volume 8
Pages None
DOI 10.1016/j.ejro.2021.100352
Language English
Journal European Journal of Radiology Open

Full Text