Earth and Planetary Science Letters | 2021

Explosive mud volcano eruptions and rafting of mud breccia blocks

 
 
 
 
 
 
 

Abstract


Abstract Azerbaijan hosts the highest density of subaerial mud volcanoes on Earth. The morphologies characterizing these structures vary depending on their geological setting, frequency of eruption, and transport processes during the eruptions. Lokbatan is possibly the most active mud volcano on Earth exhibiting impressive bursting events every ∼5 years. These manifest with impressive gas flares that may reach more than 100 meters in height and the bursting of thousands of m3 of mud breccia resulting in spectacular mud flows that extend for more than 1.5 kilometres. Unlike other active mud volcanoes, to our knowledge Lokbatan never featured any visual evidence of enduring diffuse degassing (e.g., active pools and gryphons) at and near the central crater. Only a very small new-born gryphon was intermittently active in 2019 (with negligible flow). Gas flux measurements completed with a closed-chamber technique reveal extremely low values throughout the structure with average CH 4 = 1.36 tonnes\xa0yr−1 and CO 2 = 11.85 tonnes\xa0yr−1. We suggest that after eruptive events, the mud breccia is able to seal the structure preventing gas release and thereby promoting overpressure build-up in the subsurface. This self-sealing mechanism allows a fast recharge of Lokbatan resulting in more frequent and powerful explosive episodes. Our field observations reveal the presence of large (up to ∼50,000 m3) stratified blocks that were originally part of a large crater cone. These blocks were rafted >1 km from the vent on top of mud breccia flows. We use a model based on lubrication theory to show that it is reasonable to transport blocks this large and this far provided the underlying mud flow was thick enough and the blocks are large enough. The presence of large rafted blocks is not a unique phenomenon observed at Lokbatan mud volcano and is documented at other large-scale structures both onshore and offshore.

Volume 555
Pages 116699
DOI 10.1016/j.epsl.2020.116699
Language English
Journal Earth and Planetary Science Letters

Full Text