Free radical biology & medicine | 2021

Macrophage p47phox Regulates Pressure Overload-Induced Left Ventricular Remodelling by Modulating IL-4/STAT6/PPARγ Signaling.

 
 
 
 
 
 

Abstract


NADPH oxidase (Nox) mediates ROS production and contributes to cardiac remodeling. However, macrophage p47phox, a Nox subunit regulating cardiac remodeling, is unclear. We aimed to investigate the role of macrophage p47phox in hypertensive cardiac remodeling. Pressure-overload induced by Angiotensin II (AngII) for two weeks in young adult male p47phox deficient (KO) mice showed aggravated cardiac dysfunction and hypertrophy as indicated from echocardiographic and histological studies in comparison with wild-type littermates (WT). Additionally, LV of AngII-infused KO mice showed augmented interstitial fibrosis, collagen deposition and, myofibroblasts compared to AngII-infused WT mice. Moreover, these changes in AngII-infused KO mice correlated well with the gene analysis of hypertrophic and fibrotic markers. Similar results were also found in the transverse aortic constriction model. Further, AngII-infused KO mice showed elevated circulating immunokines and increased LV leukocytes infiltration and CD206+ macrophages compared to AngII-infused WT mice. Likewise, LV of AngII-infused KO mice showed upregulated mRNA expression of anti-inflammatory/pro-fibrotic M2 macrophage markers (Ym1, Arg-1) compared to AngII-infused WT mice. AngII and IL-4 treated bone marrow-derived macrophages (BMDMs) from KO mice showed upregulated M2 macrophage markers and STAT6 phosphorylation (Y641) compared to AngII and IL-4 treated WT BMDMs. These alterations were at least partly mediated by macrophage as bone marrow transplantation from KO mice into WT mice aggravated cardiac remodelling. Mechanistically, AngII-infused KO mice showed hyperactivated IL-4/STAT6/PPARγ signaling and downregulated SOCS3 expression compared to AngII-infused WT mice. Our studies show that macrophage p47phox limits anti-inflammatory signaling and extracellular matrix remodeling in response to pressure-overload.

Volume None
Pages None
DOI 10.1016/j.freeradbiomed.2021.03.007
Language English
Journal Free radical biology & medicine

Full Text