Free radical biology & medicine | 2021

BORIS/CTCFL expression activates the TGFβ signaling cascade and induces Drp1 mediated mitochondrial fission in neuroblastoma.

 
 
 
 
 

Abstract


The cancer-testis antigen CTCFL/BORIS (Brother of Regulator of Imprinted Sites) also known, as a paralog of CTCF -the master weaver of the genome is a key transcriptional regulator. Both CTCF and BORIS can bind to the same promoter sequence and recruit diverse proteins. BORIS is also known to be associated with actively translating ribosomes suggesting new roles of BORIS in gene expression. Various studies have attempted to elucidate the role of BORIS in different cell types for the development of targeted therapy depending on molecular signatures and genetic aberrations associated with the disease type. The current study is focused on its role in neuroblastoma. Here, we have deciphered the role of BORIS on TGFβ1 pathway which is highly affected by embryonic CTCFL expression. BORIS stabilized the SMAD3 and SMAD4 transcripts leading to prolonged TGFβ activation. Further, loss of BORIS abrogated both the canonical and non-canonical TGFβ signaling suggesting the dependency of TGFβ on BORIS. The effect on the metabolic profile of the neuroblastoma cells were analyzed with change in BORIS expression levels. Also, ectopic expression of BORIS leads to Drp1 phosphorylation (Ser616) enhancing mitochondrial fission followed by a switch in cellular metabolism towards glycolysis. This cellular metabolism switch was in turn supported with a reduction in oxygen consumption rate upon BORIS expression. Interestingly methylome analysis revealed patterns of global histone methylation, a mechanism that regulate important signaling pathways in neuroblastoma. This study analyzes the consequence of BORIS expression in neuroblastoma cells and thereby elucidate its downstream targets, which could help in designing effective therapeutic for treating neuroblastoma. Similar results were obtained in both MYCN amplified and non-MYCN neuroblastoma cell lines, indicating a common mechanism of BORIS/CTCFL action in neuroblastoma.

Volume None
Pages None
DOI 10.1016/j.freeradbiomed.2021.09.010
Language English
Journal Free radical biology & medicine

Full Text