Gene | 2021

Rbs1 protein, an assembly factor of RNA polymerase III complex in the yeast Saccharomyces cerevisiae, induces a Gcn4 response and forms aggregates when overproduced.

 
 
 
 
 

Abstract


We previously reported the function of Rbs1 protein in RNA polymerase III complex assembly via interactions with both proteins and mRNAs. Rbs1 is a poly(A)-binding protein. The R3H domain in Rbs1 is required for mRNA interactions. The present study utilized the results of a genome-wide analysis of RNA binding by Rbs1 to show a direct interaction between Rbs1 with the 5 -untranslated region (5 -UTR) in PCL5 mRNA. By examining Pcl5 protein levels, we found that Rbs1 overproduction inhibited the translation of PCL5 mRNA. Pcl5 is a cyclin that is associated with Pho85 kinase, which is involved in the degradation of Gcn4 transcription factor. Consequently, lower levels of Pcl5 that resulted from Rbs1 overproduction increased the Gcn4 response. The functional R3H domain in Rbs1 was required for the downregulation of Pcl5 translation and increase in the Gcn4 response, thus validating a regulatory mechanism that relies on the interaction between Rbs1 and the 5 -UTR in PCL5 mRNA. Rbs1 protein was further characterized by microscopy, which identified single Rbs1 assemblies in part of the cell population. The presence of Rbs1 aggregates was confirmed by the fractionation of cellular extracts. Altogether, our results suggest a more general role of Rbs1 in regulating cellular metabolism beyond the assembly of RNA polymerase III.

Volume None
Pages \n 146034\n
DOI 10.1016/j.gene.2021.146034
Language English
Journal Gene

Full Text