International journal of biological macromolecules | 2021

Multiple putative methemoglobin reductases in C. reinhardtii may support enzymatic functions for its multiple hemoglobins.

 
 
 
 
 
 
 

Abstract


The ubiquitous nature of hemoglobins, their presence in multiple forms and low cellular expression in organisms suggests alternative physiological functions of hemoglobins in addition to oxygen transport and storage. Previous research has proposed enzymatic function of hemoglobins such as nitric oxide dioxygenase, nitrite reductase and hydroxylamine reductase. In all these enzymatic functions, active ferrous form of hemoglobin is converted to ferric form and reconversion of ferric to ferrous through reduction partners is under active investigation. The model alga C. reinhardtii contains multiple globins and is thus expected to have multiple putative methemoglobin reductases to augment the physiological functions of the novel hemoglobins. In this regard, three putative methemoglobin reductases and three algal hemoglobins were characterized. Our results signify that the identified putative methemoglobin reductases can reduce algal methemoglobins in a nonspecific manner under in vitro conditions. Enzyme kinetics of two putative methemoglobin reductases with methemoglobins as substrates and in silico analysis support interaction between the hemoglobins and the two reduction partners as also observed in vitro. Our investigation on algal methemoglobin reductases underpins the valuable chemistry of nitric oxide with the newly discovered hemoglobins to ensure their physiological relevance, with multiple hemoglobins probably necessitating the presence of multiple reductases.

Volume None
Pages None
DOI 10.1016/j.ijbiomac.2021.01.023
Language English
Journal International journal of biological macromolecules

Full Text