International journal of biological macromolecules | 2021

Development of microcapsules using chitosan and alginate via W/O emulsion for the protection of hydrophilic compounds by comparing with hydrogel beads.

 
 
 
 
 
 

Abstract


It is a critical challenge to protect hydrophilic compounds in food or pharmaceutical applications due to their strong tendency to leak out of the capsules into the external aqueous phase. In this work, we developed an encapsulation system that can protect hydrophilic ingredients using polyelectrolyte complexes prepared with chitosan and alginate via water-in-oil (W/O) emulsion. Unlike the traditional preparation of hydrogel beads, in which one material was added dropwise to another that had an opposite charge, we prepared microcapsules by electrostatic interaction between the positively charged -NH3+ groups of chitosan and the negatively charged -COO- groups of alginate by W/O emulsion via ultrasonication, which prevented the formation of large complexes. The preparation conditions were optimized at an ultrasonic power of 375\u202fW and alginate/chitosan ratio of 7:5, in which the alginate/chitosan microcapsules presented a good polydispersity index of 0.26 and zeta potential of -44.6\u202fmV. The SEM and TEM images showed the microcapsule contained multiple, irregular, conglutinated spheres with a core and shell structure. High encapsulation efficiency and retention efficiency showed its potential to protect hydrophilic components from harsh environments. This method provides a simple route that can efficiently encapsulate a wide range of food or pharmaceutical hydrophilic ingredients.

Volume None
Pages None
DOI 10.1016/j.ijbiomac.2021.02.089
Language English
Journal International journal of biological macromolecules

Full Text