International journal of biological macromolecules | 2021

Influence of sodium caseinate, maltodextrin, pectin and their Maillard conjugate on the stability, in vitro release, anti-oxidant property and cell viability of eugenol-olive oil nanoemulsions.

 
 
 
 
 
 

Abstract


The influence of protein (sodium caseinate-SC), polysaccharide (maltodextrin-MD; pectin-PC) and their Maillard conjugates (sodium caseinate maltodextrin conjugate-SCMDC; sodium caseinate pectin conjugate-SCPCC) were studied on the physico-chemical and biological properties of eugenol nanoemulsions/powder. The chemical composition was optimized using Taguchi design. The particles size of eugenol nanoemulsions with SC, MD, PC, SCMDC and SCPCC were 104.6, 323.5, 1872, 181.7, and 454.4\u202fnm, respectively while their zeta potentials were -31.2, -28.5, -21.4, -40.1 and -25.1\u202fmV, respectively. Turbidity studies revealed higher stability of nanoemulsion prepared with Maillard conjugate (SCMDC) compared to protein or polysaccharides alone. The dispersion of SCMDC eugenol nanoparticles in buffer was prepared to study its stability at different pH (3.0, 5.0, and 7.0) and temperature (4°, 37°, 60\u202f°C) range. In-vitro enzymatic release study showed 31 and 74% release of eugenol after 6\u202fh at pH\u202f2.4 and 7.4, respectively. In vitro antioxidant capacity of SCMDC encapsulated eugenol was higher than native eugenol, as demonstrated by free radical scavenging assays. In comparison to native eugenol, E:SCMDC eugenol showed reduced toxicity. These findings suggested that nanoencapsulated eugenol (E:SCMDC) have a huge potential in nutraceutical and therapeutic applications.

Volume None
Pages None
DOI 10.1016/j.ijbiomac.2021.04.122
Language English
Journal International journal of biological macromolecules

Full Text