International journal of biological macromolecules | 2021

Liquid-liquid phase separation of the intrinsically disordered AB region of hRXRγ is driven by hydrophobic interactions.

 
 
 

Abstract


Nuclear receptors (NRs) are a family of transcription factors that are regulated endogenously by small lipophilic ligands. Recently, liquid-liquid phase separation (LLPS) has appeared as a new aspect of NR function. In the human retinoid X receptor γ (hRXRγ), the inherently disordered AB region undergoes LLPS via homotypic multivalent interactions. To better understand the functions of liquid condensates, a clear view of the molecular interactions underlying the LLPS are required. The phase separation propensity of the AB region of hRXRγ (AB_hRXG) at a high NaCl concentration, a lower critical solution temperature behavior, and also sensitivity to kosmotropic salts and 1,6-hexanediol, which all indicate the importance of hydrophobic interactions in the formation of AB_hRXG liquid condensates, is presented in the paper. Additionally, molecular crowding agents and TMAO shift the equilibrium, in turn enabling phase transition at lower AB_hRXG concentrations. Although the LLPS of the proteins can lead to aggregation, AB_hRXG liquid condensates are not aggregation prone. Interestingly, the formation of AB_hRXG liquid condensates has an impact on the rest of the receptor, as AB_hRXG liquid condensates recruit the remaining fragment of hRXRγ into the droplets. The ability of AB_hRXG to undergo LLPS might be important for gene expression regulation.

Volume None
Pages None
DOI 10.1016/j.ijbiomac.2021.05.035
Language English
Journal International journal of biological macromolecules

Full Text