International journal of biological macromolecules | 2021

Exploring nod factor receptors activation process in chickpea by bridging modelling, docking and molecular dynamics simulations.

 
 
 

Abstract


Plasma membrane-bound receptor proteins play crucial roles in the perception and further transmission of regulatory signals to modulate numerous developmental and metabolic events. Precise functioning and fine-tuning of Nod factor receptor (NFR) mediated signalling is a critical requirement for root nodule symbiosis. Here, we have identified, cloned and phylogenetically characterized chickpea NFR1 and NFR5, which is showing significant homology with other legume NFR receptors. Homology modelling and molecular dynamics simulations highlight the molecular structure of ligand binding ectodomains [EDs] and cytosolic kinase domains [KDs] of NFRs in chickpea. Our detailed structural analysis also revealed that both NFR1 and NFR5 share resemblance as well as dissimilarity in sequence, structure and substrate-binding pocket. Further, molecular docking simulations provide us adequate insights into the active site of receptors where the Nod factor (NF) binds. The outcome of this work sheds light on the binding specificity of NFs towards NFRs and thus may significantly contribute to the design of new strategies in improving root-nodule symbiosis towards meeting the agricultural demands.

Volume None
Pages None
DOI 10.1016/j.ijbiomac.2021.08.152
Language English
Journal International journal of biological macromolecules

Full Text