Informatics in medicine unlocked | 2021

Fracture mechanics analysis of fibrin fibers using mesoscale and continuum level methods

 
 

Abstract


Computational models for simulating and predicting fibrin fiber fracture are important tools for studying bulk mechanical properties and mechanobiological response of fibrin networks in physiological conditions. In this work, we employed a new strategy to model the mechanical response of a single fibrin fiber using a collection of bundled protofibrils and modeled the time-dependent properties using discrete particle simulations. Using a systematic characterization of the parameters, this model can be used to mimic the elastic behavior of fibrin fibers accurately and also to simulate fibrin fiber fracture. In addition, a continuum model was modified and used to obtain the individual fibrin fiber fracture toughness properties. Using this model and the experimentally available fibrin mechanical properties, we predicted the range of fracture toughness (1 to kPam) values of a typical fibrin fiber of diameter 100 nm and its critical flaw size to rupture (~4 nm), both of which are not currently available in the literature. The models can be collectively used as a foundation for simulating the mechanical behavior of fibrin clots. Moreover, the tunable discrete mesoscopic model that was employed can be extended to simulate and estimate the mechanical properties of other biological or synthetic fibers.

Volume 23
Pages None
DOI 10.1016/j.imu.2021.100524
Language English
Journal Informatics in medicine unlocked

Full Text