Journal of Chemical Neuroanatomy | 2021

Alteration of CYP2E1, DBN1, DNMT1, miRNA-335, miRNA-21, c-Fos and Cox-2 gene expression in prefrontal cortex of rats’ offspring submitted to prenatal ethanol exposure during their neurodevelopment and the preventive role of nancocurcumin administration: A histological, ultrastructural and molecular

 

Abstract


Ethanol (EtOH) has been linked to neurotoxic effects on the fetus and prenatal alcohol exposure (PAE) has a negative impact on brain neurodevelopment. Therefore, the present study was aimed to focus on the underlying mechanisms of alcohol-induced oxidative stress and apoptotic cell death in addition to shedding the light on the modulatory effect of nanocurcumin in rats offspring prefrontal cortices. The current study investigated the effects of prenatal maternal exposure to EtOH intragastric (i.g.) administration of 0.015\u2009ml/g of a 10% v/v ethanol solution throughout gestation and the concomitant use of nanocurcumin, on 21-day-old offspring Wistar rat prefrontal cortex parameters. CYP2E1, DBN1, DNMT1, miRNA-335, miRNA-21, c-Fos and Cox-2 gene expression as well as the accompanying histological and ultrastructural alterations were assessed. The implemented experimental setting has revealed that ethanol exposure caused significant alterations in the above mentioned parameters. Changes observed in nanocurcumin-treated animals were significantly different to the ethanol-treated group when nanocurcumin was concomitantly administered.

Volume 113
Pages None
DOI 10.1016/j.jchemneu.2021.101940
Language English
Journal Journal of Chemical Neuroanatomy

Full Text