Journal of colloid and interface science | 2019

Water-mediated catalyst-free synthesis of lysine-based ampholytic amphiphiles for multipurpose applications: Characterization and pH-responsive emulsifying properties.

 
 
 
 
 
 

Abstract


A novel series of lysine-based ampholytic amphiphiles, with alkylsuccinic anhydrides of varying chain lengths as hydrophobic acylating agents, were synthesized in medium to high yield (50.23-90.15%) based on a facile, catalyst-free method in water medium; and structurally confirmed by mass spectrometry (MS), Fourier transform infra-red (FTIR) spectroscopy, and 1H/13C nuclear magnetic resonances (NMR) analysis. The resulting compounds were subjected to pH-dependent amphiphilic property, ferrous ion chelating, DPPH antioxidant capacity, and cytotoxicity analyses. Results showed that CMC values decrease, γ value increase, and emulsion stability increase with the increase of medium pH, suggesting that the surface activity of synthetic compounds at air/water and oil/water interface under neutral and alkaline conditions was remarkably higher than that under acidic condition. Lauryl O-acylated malic lysine (compound 4b) presented excellent foaming ability close to commercial detergent sodium dodecyl sulphate; dodecyl succinic lysine (compound 4a) afforded highly stable o/w nanoemulsion. Moreover, compound 4b displayed comparable ferrous ion chelating property to lysine and 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidative capacity similar to a commercial food ingredient, diacetyl tartaric acid esters of mono- and di-glycerides (DATEM), indicating its multi-faceted functionalities. A cytotoxicity study of compounds 3b &4b showed that they were non-toxic. Thus, these novel ampholytic amphiphiles may find multi-purpose applications in food, detergent, pharmaceutical, and cosmetic industry.

Volume 554
Pages \n 404-416\n
DOI 10.1016/j.jcis.2019.06.104
Language English
Journal Journal of colloid and interface science

Full Text